学习微分方程与差分方程的论文

学习微分方程与差分方程的论文

问:微分方程与差分方程的区别和联系
  1. 答:一、微分方程与差分方程的区别:
    1、定义不一样:微分方程指描述未知函数的导数与自变量之间的关系的方程;差分方程又称递推关系式,是含有未知函数及其差分,但不含有导数的方程。
    2、解不完全一样:微分方程的解是一个符合方程的函数,在初等数学的代数方程,其解是常数值;差分方程的解是满足该方程的函数,也就是解析解。
    3、应用不完全一样:微分方程的应用可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,很多可以用微分方程求解,微分方程在化学、工程学、经济学和人口统计等领域都有应用;差分方程多用于模型应用。
    二、差分方程是微分方程的离散化。
    扩展资料
    数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。其应用十分广泛,可以解决许多与导数有关的问题。
    常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题;偏微分方程常见的问题以边界值问题为主,边界条件则是指定一特定超曲面的值或导数需符定特定条件。
    差分方程是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的性质,他们属于数学中的非线性分析领域。解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
    参考资料:
    参考资料:
  2. 答:差分方程是微分方程的离散化。
    【微分方程】
    微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
    微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
    数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
    【差分方程】
    差分方程又称递推关系式,是含有未知函数及其差分,但不含有导数的方程。满足该方程的函数称为差分方程的解。差分方程是微分方程的离散化。
    在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。
    所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
问:关于微分方程和差分方程的关系
  1. 答:差分方程是微分方程的离散化。
    大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。
    常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
    扩展资料
    在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。
    所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
  2. 答:差分方程是微分方程的离散化。
    【微分方程】
    微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
    微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
    数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
    【差分方程】
    差分方程又称递推关系式,是含有未知函数及其差分,但不含有导数的方程。满足该方程的函数称为差分方程的解。差分方程是微分方程的离散化。
    在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。
    所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
  3. 答:你老师应该不是这个意思吧
    可能是说解的结构是一样的
    也就是说
    都是先考虑齐次方程 找基础解系
    微分方程是通过e^ax的特殊性从特征方程来考虑
    而差分方程是通过不动点的特殊性从特征方程来考虑
    接着通过初值找特解
  4. 答:精神是一致的,但是因为一个连续一个离散,数学方法上还是很不一样的,不至于一个会了另一个就能会吧……
    你要真想会就去看书,这里随便说两句没用。
问:微分方程模型与差分方程模型应用的优缺点?
  1. 答:微分方程模型:
    优点:解决连续型问题,
    缺点:解决离散型问题的。
    差分方程模型:
    优点:差分方程代替微分方程描述,在方程中避免了导函数,可以用迭代的方式求解。 
    缺点:精度略低(用割线代替切线)
    微分方程指描述未知函数的导数与自变量之间的关系的方程;差分方程又称递推关系式,是含有未知函数及其差分,但不含有导数的方程。微分方程的解是一个符合方程的函数,在初等数学的代数方程,其解是常数值;差分方程的解是满足该方程的函数,也就是解析解。
    扩展资料:
    在数值分析中首先遇到的问题是如何把微分方程化成相应的差分方程 ,使得差分方程的解能最好地近似表示原来的微分方程的解 ,其次才是进行计算。
    比如 dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1]
    (注:解为y(x)=e^(-x));
    要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
    差分方程
    y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)
    利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了。
    参考资料来源:
  2. 答:微分方程模型与差分方程模型应用的优缺点是什么?
    前者是解决连续型问题,后者是解决离散型问题的。
学习微分方程与差分方程的论文
下载Doc文档

猜你喜欢